

ER Worm Gears

Worm Gears CER-2.01GB0415 Serving an entire spectrum of mechanical drive applications from food, energy, mining and metal; to automotive, aerospace and marine propulsion, we are here to make a positive difference to the supply of drive solutions.

Series A Worm Gear units and geared motors in single & double reduction types

Series F Parallel shaft helical geared motors & reducers

Series K Right angle helical bevel helical geared motors & reducers

Series X Gear Torsionally rigid, high torque coupling

Series BD Screwjack worm gear unit

Series G Helical parallel shaft & bevel helical right angle drive gear units

Series M In-line helical geared motors & reducers

Service & Repair All brands and types

Series BS Worm gear unit

Series H

Large helical parallel

shaft & bevel helical

Roloid Gear Pump

Lubrication and fluid

transportation pump

Series X

Nylicon

nylon sleeve

Gear coupling with

right angle drive units

Series C Right angle drive helical worm geared motors & reducers

Series J Shaft mounted helical speed reducers

Series X Cone Ring Pin and bush elastomer coupling

Series X Torque Limiter Overload protection device

We offer a wide range of repair services and many years experience of repairing demanding and highly critical transmissions in numerous industries.

We can create custom engineered transmission solutions of any size and configuration.

INTRODUCTION

Introduction

ER Series worm gear units are identical replacements for David Brown (Radicon) heavy duty worm gear units in all types :

(a) Underdriven ER - U(b) Overdriven ER - O(c) Vertical ER - V

Which are identical in :

- 1. Foundation hole dimensions and size of hole
- 2. Distance from bottom base to input centreline
- 3. Input/Output shaft dimensions

Ratings are also comparable to David Brown (Radicon) worm gear units.

Gear Case

Gear case is of streamlined design, rugged in construction, made of close-grain cast iron. It is completely oiltight, dust-proof and capable of being installed in the open without a separate cover. The faces and bores are accurately bored and machined on latest precision machines to ensure perfect alignment and interchangeability.

Worm/Worm Wheel

The worm is made of case-hardened alloy steel, carburised, ground and polished and is integral with the shaft. Bearing journals are accurately ground. Worm wheels are made of centrifugally cast phosphor-bronze rims, shrink fitted and brazed onto Cast Iron centres. Worms are generated on special-purpose worm milling machines, gas carburised and ground on CNC grinding machines.

Worm wheels are hobbed on precision hobbing machines with high accuracy hobs. Each and every wheel is checked to match with the master worms to ensure complete interchangeability. Right-hand threads are provided, unless otherwise specified.

Bearings

The worms and worm wheels are supported on ball or roller anti-friction bearings of ample margin of safety to allow adequate journal as well as thrust loads. When a sprocket, gear etc is to be mounted on either shaft, then full details should be forwarded to our application engineers.

Wheel Shaft

The wheel shaft is made of high tensile carbon steel. It is of large diameter to carry the torsional as well as bending loads which may be induced by overhung drives.

Lubrication

Lubrication to gears and bearings is by splash of oil from the sump. Thus, no special care is required except for the occasional topping up of the oil to the required level. A large oil filler-cum-breather and an inspection cover is provided together with a drain plug and ventilator. Neoprene lip-type oil seals are fitted on input and output shaft. For very low input speed below 50 rpm. and heavy loads in sizes larger than 14", forced lubrication is required. In such cases details should be forwarded to our application engineers.

Cooling

Air cooling is effected by means of standard polypropylene or metal fans which direct a continuous flow of air over the ribbed surface of the gear unit. The fan is designed to operate in both direction of rotation, and is so arranged in conjunction with the ribbing on the gear unit as to allow maximum heat dissipation.

Holdback

Sprag type holdback can be fitted on all sizes of gears to prevent reverse rotation. In cases where holdback is requied, the direction of rotation of the shaft should be mentioned.

Power Ratings

The ratings indicated in the catalogue holds good for 12 hours of continuous running under uniform load being driven by electric motor. They give minimum gear life of 26,000 hours, subject to limitation of maximum oil temperature of 100°C under full load, 20°C ambient.

Overloads

All the components of the reduction gears are so designed that they can withstand.

- * 100 per cent overload for 15 seconds
- * 50 per cent overload for one minute
- * 40 per cent overload for 30 minutes and
- * 25 per cent overload for two hours.

LOAD CLASSIFICATION BY APPLICATIONS

		Driven Machine t	type of load	Driven Machine	type of load	Driven Machine	type o Ioad
Table 1		Cranes		log haul-incline	н	log haul	Н
		main hoists bridge travel	ŧ	log haul-well type log turning device	H H	presses pulp machine reel	M M
		trolley travel	ł	main log conveyor	H	stock chest	M
U = Uniform load		,		off bearing rolls	М	suction roll	M
u – uniform load		Crusher		planer feed chains	M	washers and thickeners	M
M = Moderate shock loa	ad	ore stone	H H	planer floor chains planer tilting hoist	M M	winders	M
II - Ilaavay ahaaly laad		sugar	Ĥ	re-saw merry-go-round		Printing presses	+
H = Heavy shock load		Dredges		conveyor	M	Dullara	
+ = Refer to our Applic	ation	Dredges cable reels	М	roll cases slab conveyor	H H	Pullers barge haul	н
Engineers		conveyors	М	small wasté		J. J	
-		cutter head drives	Н	conveyor-belt	U	Pumps	
		jig drives manoeuvring winches	H M	small waste conveyor-chain	М	centrifugal proportioning	U M
		pumps	M	sorting table	M	reciprocating	101
		screen drive	Н	tipple hoist conveyor	M	single acting; 3 or	
		stackers utility winches	M	tipple hoist drive transfer conveyors	M M	more cylinders double acting; 2 or	M
			IVI	transfer rolls	M	more cylinders	М
Driven Machine	type of	Dry dock cranes		tray drive	М	single acting; 1 or 2	
Driven Machine	load	main hoist	İ	trimmer feed	M	cylinders	+
		auxiliary hoist boom, luffing	Ļ	waste conveyor	М	double acting; single cylinder	+
Agitators pure liquids	U	rotating, swing or slew	ł	Machine tools		rotary	
liquids and solids	M	tracking, drive wheels	t	bending roll	M	gear type	U
liquids-variable density	M	Elevators		punch press-gear driven notching press- belt	Н	lobe, vane	U
Blowers		bucket-uniform load	U	driven	† H	Rubber and plastics	
centrifugal	U	bucket-heavy load	Μ	plate planers		industries	
obe	Ň	bucket-continuous centrifugal discharge	U U	tapping machine other machine tools	Н	crackers laboratory equipment	H M
vane	U	escalators	Ŭ	main drives	М	mixed mills	H
Brewing and distilling		freight	Μ	auxiliary drives	Ü	refiners	Μ
bottling machinery	М	gravity discharge	Ų	Matal milla		rubber calenders	M
brew kettles-continuous		man lifts passenger	ŧ	Metal mills draw bench carriage		rubber mill-2 on line rubber mill-3 on line	M
duty	M	pussenger	1	and main drive	М	sheeter	M
cookers-continuous duty mash tubs-continuous	IVI	Fans		pinch, dryer and		tire building machines	+
duty	М	centrifugal	U	scrubber rolls-reversing slitters	† M	tire and tube press	+
scale hopper-frequent		cooling towers induced draft	+	table conveyors	IVI	openers tubers and strainers	t M
starts	М	forced draft	÷	non-reversing		warming mills	M
Can filling machines	М	induced draft	M	group drives	M		
•		large, mine, etc large, industrial	M	individual drives reversing	Н	Sand muller	M
Cane knifes	М	light, small diameter	Ű	wire drawing and		Sewage disposal	
Car dumpers	н			flattening machine	М	equipment	
•		Feeders	5.4	wire winding machine	М	bar screens	U
Car pullers	M	apron belt	M M	Mill-rotary type		chemical feeders collectors	U
Clarifiers	U	disc	U	ball	Н	dewatering screws	M
Cial IIIel S	0	reciprocating	Н	cement kilns	H	scum breakers	M
Classifiers	Μ	screw	М	dryers and coolers kilns, other than cement	H H	slow or rapid mixers thickeners	M
		Food industry		pebble	H	vacuum filters	M
Clay working machinery		beef slicer	М	rod			
brick press	Н	cereal cooker	U	plain	Н	Screens	
briquette machine	н	dough mixer meat grinders	M	wedge bar tumbling barrels	H H	air washing rotary-stone or gravel	U M
clay working machinery	M	J J	111			travelling water intake	Ű
pug mill	IVI	Generators-not		Mixers		5	
Compressors		welding	U	concrete mixers -continuous	М	Slab pushers	М
centrifugal obe	U M	Hammer mills	н	concrete mixers		Steering gear	+
ope reciprocating	IVI			-intermittent	М		
multi-cylinder	М	Hoists heavy duty	н	constant density variable density	U M	Stokers	U
single cylinder	Н	medium duty	м	valiable delibity	IVI	Sugar industry	
Conveyors-uniformly		skip hoist	M	Oil industry		cane knives	Μ
oaded or fed		Laundar		chillers	M	crushers	M
apron	U	Laundry washers reversing	М	oil well pumping paraffin filter press	† M	mills	Μ
assembly belt		3	111	rotary kilns	M	Textile industry	
bucket	Ŭ	Laundry tumblers	М			batchers	М
chain	Ũ	Line shafts		Paper mills agitators, (mixers)	М	calenders cards	M
light	U.	driving processing		barker-auxiliarieshydraulio		dry cans	M
oven screw	U	equipment	М	barker-mechanical	н	dryers	M
	0	light	U	barking drum	H	dyeing machinery	M
Conveyors-heavy		other line shafts	U	beater and pulper bleacher	M U	knitting machines	† M
duty not uniformly fed	N 4	Lumber industry		calenders	M	mangles	M
apron assembly	M M	barkers-hydraulicmechanic		calenders-super	Ĥ	nappers	M
belt	M	burner conveyor	М	converting machine,	N 4	pads rango drivos	M
bucket	М	chain saw and drag saw chain transfer	H H	except cutters, platers conveyors	M U	range drives slashers	† M
chain flight	M M	craneway transfer	Н	couch	M	soapers	Μ
	† M	de-barking drum	Н	cutters-plates	н	spinners	M
		edger feed	M	cylinders	M	tenter frames	M
live roll oven	M	dang feed			N/L		N /
live roll oven reciprocating	н	gang feed green chain	M M	dryers felt stretcher	M M	washers winders	M M
live roll oven reciprocating screw shaker	M H M H	gang feed	М	dryers		washers	

SERIES ER EXPLANATION & USE OF RATINGS & SERVICE FACTORS

Explanation And Use Of Ratings And Service Factors.

Gear unit selection is made by comparing actual loads with catalogue ratings. Catalogue ratings are based on a standard set of loading conditions whereas actual load conditions vary according to type of application. Service factors are therefore used to calculate an equivalent load to compare with catalogue ratings.

Mechanical Ratings and Service Factor (Fм)

Mechanical ratings measure capacity in terms of life and/or strength assuming 12 hr/day continuous running under uniform load conditions. Catalogue ratings allow 100% overload at starting, breaking or momentarily during operations up to 12 hours per day.

Duine marine	Duration of service hrs	Load classi	fication - driv	en machine
Prime mover	per day service	Uniform	Moderate Shock	Heavy Shock
Electric motor,	Under : 3	0.8	1	1.5
steam turbine or	3 to 10	1	1.25	1.75
hydraulic motor	Over 10 to 24	1.25	1.5	3
Multi-cylinder	Under : 3	1	1.25	1.75
internal, combustion	3 to 10	1.25	1.5	2
engine	Over 10 to 24	1.5	1.75	2.25
Single cylinder internal,	er Under: 3	1.25	1.5	2
combustion	3 to 10	1.5	1.75	2.25
engine combustion	Over 10 to 24	1.75	2	2.5

Table 2 - Mechanical Service Factor (Fм)

 For Units subject to frequent starts/stops and overloads, also applications where high inertia loads are involved e.g. crane travel drives, slewing motion etc, please contact our application engineers.

Thermal ratings and Thermal service factor (FT)

Thermal ratings measure a unit's ability to dissipate heat, if they are not exceeded, the lubricant may overheat and break down resulting in failure of gear unit. Thermal ratings are affected by ambient temperature and not by mechanical considerations such as increased running time and shock loads. Catalogue ratings are given on 20°C ambient temperature allowing for a lubricant temperature rise to 100°C during operation as the unit transmit power and generate heat. Thermal ratings calculated with unit fan cooling. Thermal service factor FT (Table No. 3) is used to modify the actual load according to prevailing ambient temperature.

Table 3 - Thermal Service Factor (FT)

Ambient Temp °C	10	20	30	40	50	60
factor	0.87	1.00	1.16	1.35	1.62	1.97

If the ambient temperature is other than 20°C, divide the catalogue thermal rating by the factor from Table No. 3

EXAMPLE SELECTIONS

Example - 1

Worm reduction gear having input (worm) above the wheel required for belt conveyor where non-uniform material is fed on conveyor belt, operating for 8 hours per day. Speed required at conveyor shaft is 50 rpm. The gear unit is driven directly using coupling by 30 KW, 1500 rpm electric motor.

Step : 1	Ratio required	=	Input Speed1500Output Speed50	= 30:1
Step : 2	From Table No 1.			
	Drive m/c	-	Belt Conveyor	
	Material	-	Non uniform fed	
	Type of Load	-	Moderate Shock (M)	
	From Table No. 2			
	Mechanical service	e factor (Fi	m) = 1.25 for 8 hr/day operation	
Step : 3	Input power	=	Motor Power x Fm	
		=	30 x 1.25	
		=	37.5 Kw	
	From Catalogue	-	Rating at Input 1500 rpm, Ratio 30:1	
	Gear unit size	:	10 Ratio - 30:1	
	Input Power	=	40 Kw	
	Gear unit/type/size	:	10 ER-O, Ratio - 30:1	

Example - 2

Worm reduction gear unit underdriven type is required to drive a bucket elevator heavily loaded, operating 24 hours per day at 29 rpm, transmitting 30 KW. The gear unit is directly driven using coupling by a 1500 rpm electric motor. The ambient temperature is 30°C on plant.

Step : 1	Ratio required =	Input Speed Output Speed	1500 29	= 50:1 (nearest standard ratio)
Step : 2	From Table No 1. Drive m/c - Type of Load - From Table No. 2 Mechanical service factor (Bucket Elevator (f Moderate Shock (Fm) = 1.50 for 24 hr/c	M)	tion
Step : 3	Equivalent output power (m Equivalent output torque (m From Catalogue. Refer rating at input speed Gear unit size 14, ratio 50: ² Input Power (mechanical) =	nechanical) = 1500 rpm, Ratio - 50 I having output torque		= 45 Kw = 14818.96 Nm 57.4 Nm
Step : 4	From Table No. 3 Thermal For an ambient temprature Equivalent output power (T	of 30°C	= 1.16 = 30 Kw x 1.16 = 34.8 Kw = $\frac{9550 \times 45}{29}$	= 11460 Nm.

EXAMPLE SELECTIONS

Step:5

From the catalogue, the rating at input speed 1500 rpm, and ratio - 50:1, for a size 14" unit: Output torque (thermal) = 10486.9 Nm, which is less than calculated equivalent Output torque (thermal) = 11460 Nm The higher gear unit size 17 ER-U, ratio - 50:1 should be selected. Input speed 1500rpm, output torque (mechanical) = 29064 Nm, Input power (mechanical) = 110 Kw

Required Input power

= Calculated equivalent output torque (Mech.) x Rated power (Mech.) rated output torque (Mech.) x Fm

 $= \frac{14818.96 \times 110}{29064 \times 1.5} = 37.39 \text{ Kw}$

Nearest standard motor having 37Kw at 1500 rpm an be selected for the application.

RATINGS

Ratings At Input Speed 1450 RPM

	OUTPUT SPEED RPM	CAPACITY		SIZE O	FUNIT	
GEAR RATIO	JUIPUI SPEED RPM	CAPACITY	10	12	14	17
		INPUT MECH. POWER (KW)	123	196	274	*
E I	200	OUTPUT MECH. TORQUE (Nm)	3700	5494	8225	*
5	300	INPUT THERMAL POWER (KW)	90	119	162	*
		OUTPUT THERMAL TORQUE (Nm)	2708	3777	4857	*
		INPUT MECH. POWER (KW)	92	128	184	*
	000	OUTPUT MECH. TORQ;UE (Nm)	4129	5700	8280	*
7.5	200	INPUT THERMAL POWER (KW)	76	109	150	*
		OUTPUT THERMAL TORQUE (Nm)	3411	4807	6675	*
		INPUT MECH. POWER (KW)	65	111	162	320
		OUTPUT MECH. TORQUE (Nm)	3807	6557	9635	193
10	150	INPUT THERMAL POWER (KW)	62	99	141	200
		OUTPUT THERMAL TORQUE (Nm)	3632	6165	8358	1222
		INPUT MECH. POWER (KW)	58	81	150	249
		OUTPUT MECH. TORQUE (Nm)	4985	7132	13349	218
15	100	INPUT THERMAL POWER (KW)	56	76	110	17
		OUTPUT THERMAL TORQUE (Nm)	4813	6670	9790	157
		INPUT MECH. POWER (KW)	55	75	123	210
		OUTPUT MECH. TORQUE (Nm)	6303	8619	14288	250
20	75	INPUT THERMAL POWER (KW)	48	63	94	16
		OUTPUT THERMAL TORQUE (Nm)	5501	7240	10955	183
		INPUT MECH. POWER (KW)	45	68	110	17
		OUTPUT MECH. TORQUE (Nm)	6303	9380	14695	243
25	60	INPUT THERMAL POWER (KW)	39	50	72	13
		OUTPUT THERMAL TORQUE (Nm)	5463	6948	9947	1912
		INPUT MECH. POWER (KW)	40	56	92	15
		OUTPUT MECH. TORQUE (Nm)	6494	9339	14652	265
30	50	INPUT THERMAL POWER (KW)	32	45	61	12
		OUTPUT THERMAL TORQUE (Nm)	5195	7505	9761	203
		INPUT MECH. POWER (KW)	34	51	76	119
		OUTPUT MECH. TORQUE (Nm)	7360	10830	16137	260
40	37.5	INPUT THERMAL POWER (KW)	25	37	48	2000
		OUTPUT THERMAL FOWER (KW)	5412	7858	40 10193	201
		INPUT MECH. POWER (KW)	28	44	62	201.
		OUTPUT MECH. TORQUE (Nm)	7131	11404	16457	290
50	30	INPUT THERMAL POWER (KW)	22	31	40	2906
			5603	8741	10487	2130
			24	37	55 17521	78
60	25		7243	11092	17521	2532
			18	28	34	45
			5432	8397	10702	177
			21	32	46	75
70	21.4		7310	11207	16716	2744
			20	23	28	57
		OUTPUT THERMAL TORQUE (Nm)	6962	7880	10320	2045

RATINGS

Ratings At Input Speed 960 RPM

GEAR RATIO	OUTPUT SPEED RPM	CAPACITY		SIZE	OF UNIT	
GEAR RAIIO	OUTPUT SPEED RPM	CAPACITY	10	12	14	17
		INPUT MECH. POWER (KW)	99	152	223	*
-	000	OUTPUT MECH. TORQUE (Nm)	4570	6835	9717	*
5	200	INPUT THERMAL POWER (KW)	70	100	154	*
		OUTPUT THERMAL TORQUE (Nm)	3209	4450	6710	*
		INPUT MECH. POWER (KW)	72	110	152	*
7 5	100	OUTPUT MECH. TORQ;UE (Nm)	4928	7361	9835	*
7.5	133	INPUT THERMAL POWER (KW)	57	80	132	*
		OUTPUT THERMAL TORQUE (Nm)	3880	5353	8535	*
		INPUT MECH. POWER (KW)	51	92	134	268
10	100	OUTPUT MECH. TORQUE (Nm)	4481	8187	11301	2431
10	100	INPUT THERMAL POWER (KW)	49	70	111	160
		OUTPUT THERMAL TORQUE (Nm)	4305	6229	9359	1410
		INPUT MECH. POWER (KW)	45	68	125	220
45	00 7	OUTPUT MECH. TORQUE (Nm)	5863	8882	15627	2897
15	66.7	INPUT THERMAL POWER (KW)	41	60	97	139
		OUTPUT THERMAL TORQUE (Nm)	5342	7838	12076	1834
		INPUT MECH. POWER (KW)	42	62	102	209
		OUTPUT MECH. TORQUE (Nm)	7140	10565	16628	3552
20	50	INPUT THERMAL POWER (KW)	33	49	84	132
		OUTPUT THERMAL TORQUE (Nm)	5610	8358	13298	2143
25		INPUT MECH. POWER (KW)	33	53	80	128
	10	OUTPUT MECH. TORQUE (Nm)	6776	11125	15922	2719
25	40	INPUT THERMAL POWER (KW)	28	40	67	89
		OUTPUT THERMAL TORQUE (Nm)	5749	8530	13361	18911
		INPUT MECH. POWER (KW)	30	48	73	120
20	22.4	OUTPUT MECH. TORQUE (Nm)	7399	11884	17181	3097
30	33.4	INPUT THERMAL POWER (KW)	24	35	58	80
		OUTPUT THERMAL TORQUE (Nm)	5919	65	13705	2041
		INPUT MECH. POWER (KW)	26	42	60	80
40	25	OUTPUT MECH. TORQUE (Nm)	8442	13381	18953	6282
40	25	INPUT THERMAL POWER (KW)	19	31	36	62
		OUTPUT THERMAL TORQUE (Nm)	6007	9715	12135	2036
		INPUT MECH. POWER (KW)	21	36	49	78
50	20	OUTPUT MECH. TORQUE (Nm)	8244	13489	19281	3128
50	20	INPUT THERMAL POWER (KW)	16	24	35	60
		OUTPUT THERMAL TORQUE (Nm)	6341	8986	13737	2378
		INPUT MECH. POWER (KW)	17	30	39	72
60	16.7	OUTPUT MECH. TORQUE (Nm)	8006	13293	18600	3417
00	10.7	INPUT THERMAL POWER (KW)	13	22	26	50
		OUTPUT THERMAL TORQUE (Nm)	5947	9751	12302	2344
		INPUT MECH. POWER (KW)	15	32	34	62
70	14.3	OUTPUT MECH. TORQUE (Nm)	7263	11207	17820	3353
10	14.5	INPUT THERMAL POWER (KW)	12	19	22	43
		OUTPUT THERMAL TORQUE (Nm)	6011	9335	12027	2326

T1

ž

DIMENSIONS

10, 12, 14, 17 ER-U

Output Shaft Keyway Detail

u2

01750			мо	UNT	ING	DET	AILS	5				INP	UT SH	AFT DE	TAILS					0	UTP	UT S	HAFT D	ETAILS	3		
SIZES	Α	AU	в	BU	cυ	os	HU	EU	Р	D1	L1	V1	M1	Ti	W1	к	K 1	K2	D2	L2	V2	M2	T2	W2	K3	K4	K5
10 ER-U	590	122	120	220	50	22	170	426	730	55.030	90	85	M20	49.0	16	225	425	460	85.035	150	147	M20	76.0	22	222	275	200
	590	432	430	330	50	33	172	420	730	55.011	90	05	10120	49.0	10	335	420	400	85.013	152	147	IVIZU	70.0	22	223	375	200
12 ER-U	600	501	E 4 0	260	55	22	101	105	860	60.030	104	120	M20	53.0	18	371	105	505	95.035	170	165	M20	86.0	25	242	112	210
12 ER-0	090	521	540	300	55	33	191	495	800	60.011	124	120	IVI20	55.0	10	371	495	505	95.013	170	105	IVIZU	00.0	25	243	413	210
14 ER-U	020	507	560	122	65	22	216	570	970	75.030	140	145	M20	67.5	20	423	570	545	120.035	100	105	M24	109	32	202	102	215
14 ER-0	020	597	500	432	05	33	210	572	970	75.011	149	145	10120	07.5	20	423	572	545	120.013	190	100	10124	109	52	293	403	215
17 ER-U	920	760	600	500	75	22	254	606	1185	80.030	100	175	M20	71.0	22	E20	700	650	140.040	202	200	M30	128	36	242	546	300
17 ER-0	920	102	000	508	15	55	204	000	1100	80.011	100	175	IVIZU	71.0	22	520	100	030	140.015	203	200	10130	120	- 50	545	540	500

ER-O

01750			Μ	IOUN	ITIN	g de	ΤΑΙ	LS					INPL	IT SHA	AFT DI	ETAIL	s				o	UTP	UT SH	IAFT D	ETAIL	s		
SIZES	a	b	с	е	f	n	s	h1	h2	Ρ	D1	L1	V1	M1	Ti	W1	ĸ	К1	K2	D2	L2	V2	M2	T2	W2	K3	K4	K5
	000	400		400	500	110	22	070	507	700	55.030		0.5	N400	10.0	10	0.05	405	400	85.035	450	447		70.0			075	
10 ER-0	330	432	50	430	580	110	33	213	527	730	55.011	90	85	M20	49.0	16	335	425	460	85.013	152	147	M20	76.0	22	223	3/5	200
	000	504		E 40	<u></u>	405	22		0.05	000	60.030		100	N100	52.0	10	074	405	505	95.035	470	4.05	1400	00.0	05	0.40	440	
12 ER-0	368	521	55	540	630	125	33	330	635	860	60.011	124	120	M20	53.0	18	371	495	505	95.013	170	165	M20	86.0	25	243	413	210
	422	507	6E	560	770	150	22	201	707	070	75.030		1 1 5	M20	67.5	20	422	570	545	120.035	100	105	M24	109	20	202	102	215
14 ER-0	432	597	60	500	110	150	33	301	131	970	75.011	1149	145	M20	67.5	20	423	15/2	545	120.013	190	105	M24	109	32	293	403	215
	540	750	75		000	470	22	400	000	11.10	80.030	100	475		74.0	00	500	700	0.50	140.040	000	000		400	20	242	F 40	
17 ER-0	1510	750	/5	600	920	170	33	460	892	1140	80.011	180	175	M20	71.0	22	1520	1,00	650	140.015	203	200	M30	128	36	343	540	300
Key & Ke	yway	/s as	per	B.S.	46 (part-	1)																					

DIMENSIONS

01750			Μ	OUN	NTIN	g de	ETAI	LS				INPUT SHAFT DETAILS								OUTF	PUTS	HAF	T DETA	ILS		
SIZES	X1	X2	Y1	Y2	cv	os	ΗV	Н	κ	Ρ	D1	L1	V1	M1	Ti	W1	к	K1	K2	D2	L2	V2	M2	T2	W2	К3
10 ER-V	260	310	260	225	55	33	270	190	254	734	55.030	90	85	M20	49.0	16	335	425	803	85.035	152	147	M20	76.0	22	375
	200	510	200	200	55	55	219	100	204	734	55.011	90	00	10120	49.0	10	333	423	005	85.013	132	147	10120	70.0	22	575
	24.0	240	24.0	007	<u></u>	22	205	475	205	830	60.030	124	400		52.0	40	074	405	000	95.035	470	405	M00	00.0	05	440
12 ER-V	310	310	310	207	00	33	305	175	305	030	60.011	124	120	M20	53.0	18	371	495	936	95.013	170	105	M20	86.0	25	413
											75.030									120.035						
14 ER-V	356	350	356	305	65	33	330	200	356	975	75.011	149	145	M20	67.5	20	423	572	1093	120.013	190	185	M24	109	32	483
	400	500	400	400	75	40	400	000	400		80.030		475		74.0	22	500	<u></u>	4000	140.040	202	000	1400	400	36	540
17 ER-V	432	500	432	432	/5	40	406	238	432	1190	80.011	180	175	M20	71.0	22	520	699	1328	140.015	203	200	10130	128	30	546

ര

Key & Keyways as per B.S. 46 (part-1)

Mounting Positions And Shaft Handing

B - Breather Plug D - Drain Plug

ER-V(X)

L - Oil Level Indicator

G

ER-V/LX ER-V/RX

ER-V(Y)

Replace G by plug for ER-V(X), V(Y) in bottom side.

ER-V

GEAR RATIO

Actual Gear Ratio

Size	5	7.5	10	15	20	25	30	40	50	60	70
10	4.8	7.33	9.75	14.67	19.5	24.5	29.5	40	50	60	70
12	4.9	7.43	9.8	14.67	20.5	24.5	29.5	40	50	60	70
14	5.1	7.57	9.8	14.67	20.33	24.5	30.5	39	49	61	69
17	5.1	7.37	9.8	14.75	19.66	25.5	29.5	40	50	60	71

Overhung Loads :

Whenever a sprocket, gear, sheave or pulley is mounted on the output shaft, a calculation should be made to determine the overhung load in Newtons on the shaft, using the formula:

$$P = \frac{Kw \times 9550 \times K}{N \times R}$$

Where, P = equivalent overhung load in Newtons KW = power carried by shaft in Kilo Watts N = r.p.m. of the shaft R = pitch radius of sprocket, pinion, sheave or pulley in meter

K = factor

K Factor **Overhung Member**

Sprocket	1.00
Spur Pinion	1.25
V-belt Sheave	1.50
Flat Belt Pulley	2.00

The calculated equivalent overhung load should be compared with the permissible values given in the table.

Maximum Permissible Overhung Loads (Newtons) At Centre Of Wheel Shaft Extention At 1500 R.P.M. Input Speed.

RATIO	BEARING NEAR SHAFT EXTENSION	SIZE OF UNIT			
		10	12	14	17
_	Standard Bearings	19550	22310	34654	
5	Reinforced Bearings	29800	34650	50000	
7.5	Standard Bearings	21000	27000	40500	
7.5	Reinforced Bearings	32000	36650	54975	
10	Standard Bearings	31000	32909	49363	55000
10	Reinforced Bearings	33000	46636	69954	99000
4-	Standard Bearings	28000	33050	50875	63594
15	Reinforced Bearings	40000	55120	87089	130633
20	Standard Bearings	26700	33000	52080	65100
20	Reinforced Bearings	42000	57674*	92000*	138000*
25	Standard Bearings	28000	32636	65270	78824
25	Reinforced Bearings	47700	57004*	117068*	151025*
30	Standard Bearings	29000	32800	67980	81576
30	Reinforced Bearings	51000	57800*	127545*	172185*
40	Standard Bearings	29000	31325	76726	88071
40	Reinforced Bearings	50450	63272*	140745*	182968*
50	Standard Bearings	31000	32080	83450	100148
50	Reinforced Bearings	52700	63305*	154935*	185922*
60	Standard Bearings	30000	34650	85535	102642
00	Reinforced Bearings	53000	67630*	138050*	179465*
70	Standard Bearings	26000	41580	86310	103572
70	Reinforced Bearings	56045	70950*	143484*	186530*

* Special Heat Treated Shaft is supplied

TRB = Taper Roller Bearing CRB = Cylindrical Roller Bearing

LUBRICATION

Weight & Oil Capacity

ER-U

Size	10	12	14	17
Net Weight (kgs.)	450	580	885	1260
Gross Weight (Kgs.)	595	900	1140	1700
Oil Capacity (Itrs.)	20	25	36	60

ER-V

Size	10	12	14	17
Net Weight (kgs.)	440	660	870	1575
Gross Weight (Kgs.)	560	845	1120	2000
Oil Capacity (ltrs.)	20	29	43	106

Recomended Lubricants

Mineral Oil

Brand	Grade		
BP International Ltd	CS 320 or GR-XP320		
Castro!	Alpha Zn 320 or Alpha Sp-320 or Tribol 1100/320 TG0		
Caltex	Meropa 320		
Esso Petroleum	Teresso 320 or Spartan 320		
Fuchs	Renolin CKC 320		
Mobil Oil Co.	Mobil DTE Oil AA or Mobilgear 632		
Shell	Vitera Oil 320 or Omela 320		

POLYGLYCOL BASED SYNTHETIC LUBRICANT

Use of polyglycol based synthetic lubricant is also advisable to improve the transmitting capacity (rating) of gear units min. 20% as compared with use of mineral oil at same working temperature. This gear oil shows excellent non-ageing stability with favourable influence on efficiency.

Aproved Synthetic Lubricants

Brand	Grade		
Castrol	Tribol 800-220		
Fuchs	Renolin PG 220		

Special Note : Synthetic Lubricants must not be mixed with any other type of oil. The gear unit must be flushed while changing to or from this lubricant.

ER-O

Size	10	12	14	17
Net Weight (kgs.)	480	660	940	1380
Gross Weight (Kgs.)	610	920	1180	1800
Oil Capacity (ltrs.)	22	27	38	95

- First filling of oil is not supplied with the gear unit.
- First change of oil should be made after 500 hrs. of operation
- Subsequent oil change must be made after every 3000 hrs. of operation. This interval should not exceed 12 months.

IMPORTANT

Product Safety Information

General - The following information is important in ensuring safety. It **must** be brought to the attention of personnel involved in the selection of power transmission equipment, those responsible for the design of the machinery in which it is to be incorporated and those involved in its installation, use and maintenance.

Our equipment will operate safely provided it is selected, installed, used and maintained properly. As with any power transmission equipment **proper precautions must be taken** as indicated in the following paragraphs, to ensure safety.

Potential Hazards - these are not necessarily listed in any order of severity as the degree of danger varies in individual circumstances. It is important therefore that the list is studied in its entirety:-

1) Fire/Explosion

(a) Oil mists and vapour are generated within gear units. It is therefore dangerous to use naked lights in the proximity of gearbox openings, due to the risk of fire or explosion.

(b) In the event of fire or serious overheating (over 300 °C), certain materials (rubber, plastics, etc.) may decompose and produce fumes. Care should be taken to avoid exposure to the fumes, and the remains of burned or overheated plastic/rubber materials should be handled with rubber gloves.

2) Guards - Rotating shafts and couplings must be guarded to eliminate the possibility of physical contact or entanglement of clothing. It should be of rigid construction and firmly secured.

3) Noise - High speed gearboxes and gearbox driven machinery may produce noise levels which are damaging to the hearing with prolonged exposure. Ear defenders should be provided for personnel in these circumstances. Reference should be made to the Department of Employment Code of Practice for reducing exposure of employed persons to noise.

4) Lifting - Where provided (on larger units) only the lifting points or eyebolts must be used for lifting operations (see maintenance manual or general arrangement drawing for lifting point positions). Failure to use the lifting points provided may result in personal injury and/or damage to the product or surrounding equipment. Keep clear of raised equipment.

5) Lubricants and Lubrication

(a) Prolonged contact with lubricants can be detrimental to the skin. The manufacturer's instruction must be followed when handling lubricants.

(b) The lubrication status of the equipment must be checked before commissioning. Read and carry out all instructions on the lubricant plate and in the installation and maintenance literature. Heed all warning tags. Failure to do so could result in mechanical damage and in extreme cases risk of injury to personnel.

6) Electrical Equipment - Observe hazard warnings on electrical equipment and isolate power before working on the gearbox or associated equipment, in order to prevent the machinery being started.

7) Installation, Maintenance and Storage

(a) In the event that equipment is to be held in storage, for a period exceeding 6 months, prior to installation or commissioning, we must be consulted regarding special preservation requirements. Unless otherwise agreed, equipment must be stored in a building protected from extremes of temperature and humidity to prevent deterioration.

The rotating components (gears and shafts) must be turned a few revolutions once a month (to prevent bearings brinelling).

(b) External gearbox components may be supplied with preservative materials applied, in the form of a "waxed" tape overwrap or wax film preservative. Gloves should be worn when removing these materials. The former can be removed manually, the latter using white spirit as a solvent.

Preservatives applied to the internal parts of the gear units do not require removal prior to operation.

(c) Installation must be performed in accordance with the manufacturer's instructions and be undertaken by suitably qualified personnel.

(d) Before working on a gearbox or associated equipment, ensure that the load has been removed from the system to eliminate the possibility of any movement of the machinery and isolate power supply. Where necessary, provide mechanical means to ensure the machinery cannot move or rotate. Ensure removal of such devices after work is complete.

(e) Ensure the proper maintenance of gearboxes in operation. Use only the correct tools and our approved spare parts for repair and maintenance. Consult the Maintenance Manual before dismantling or performing maintenance work.

8) Hot Surfaces and Lubricants

(a) During operation, gear units may become sufficiently hot to cause skin burns. Care must be taken to avoid accidental contact.(b) After extended running the lubricant in gear units and lubrication systems may reach temperatures sufficient to cause burns. Allow

equipment to cool before servicing or performing adjustments.

9) Selection and Design

(a) Where gear units provide a backstop facility, ensure that back-up systems are provided if failure of the backstop device would endanger personnel or result in damage.

(b) The driving and driven equipment must be correctly selected to ensure that the complete machinery installation will perform satisfactorily, avoiding system critical speeds, system torsional vibration, etc.

(c) The equipment must not be operated in an environment or at speeds, powers, torques or with external loads beyond those for which it was designed.

(d) As improvements in design are being made continually the contents of this catalogue are not to be regarded as binding in detail, and drawings and capacities are subject to alterations without notice.

The above guidance is based on the current state of knowledge and our best assessment of the potential hazards in the operation of the gear units. Any further information or clarification required may be obtained by contacting our Application Engineers.